SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hoffman Bolton Judith) ;pers:(Hallmans Göran);pers:(Sund Malin)"

Search: WFRF:(Hoffman Bolton Judith) > Hallmans Göran > Sund Malin

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Clendenen, Tess V., et al. (author)
  • Breast Cancer Risk Factors and Circulating Anti-Müllerian Hormone Concentration in Healthy Premenopausal Women
  • 2021
  • In: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 106:11, s. E4542-E4553
  • Journal article (peer-reviewed)abstract
    • Context: We previously reported that anti-Müllerian hormone (AMH), a marker of ovarian reserve, is positively associated with breast cancer risk, consistent with other studies.Objective: This study assessed whether risk factors for breast cancer are correlates of AMH concentration.Methods: This cross-sectional study included 3831 healthy premenopausal women (aged 21-57, 87% aged 35-49) from 10 cohort studies among the general population.Results: Adjusting for age and cohort, AMH positively associated with age at menarche (P < 0.0001) and parity (P = 0.0008) and inversely associated with hysterectomy/partial oophorectomy (P = 0.0008). Compared with women of normal weight, AMH was lower (relative geometric mean difference 27%, P < 0.0001) among women who were obese. Current oral contraceptive (OC) use and current/former smoking were associated with lower AMH concentration than never use (40% and 12% lower, respectively, P < 0.0001). We observed higher AMH concentrations among women who had had a benign breast biopsy (15% higher, P = 0.03), a surrogate for benign breast disease, an association that has not been reported. In analyses stratified by age (<40 vs ≥40), associations of AMH with body mass index and OCs were similar in younger and older women, while associations with the other factors (menarche, parity, hysterectomy/partial oophorectomy, smoking, and benign breast biopsy) were limited to women ≥40 (P-interaction < 0.05).Conclusion: This is the largest study of AMH and breast cancer risk factors among women from the general population (not presenting with infertility), and it suggests that most associations are limited to women over 40, who are approaching menopause and whose AMH concentration is declining.
  •  
3.
  • Clendenen, Tess V., et al. (author)
  • Breast cancer risk prediction in women aged 35-50 years : impact of including sex hormone concentrations in the Gail model
  • 2019
  • In: Breast Cancer Research. - : BioMed Central. - 1465-5411 .- 1465-542X. ; 21
  • Journal article (peer-reviewed)abstract
    • Background: Models that accurately predict risk of breast cancer are needed to help younger women make decisions about when to begin screening. Premenopausal concentrations of circulating anti-Mullerian hormone (AMH), a biomarker of ovarian reserve, and testosterone have been positively associated with breast cancer risk in prospective studies. We assessed whether adding AMH and/or testosterone to the Gail model improves its prediction performance for women aged 35-50.Methods: In a nested case-control study including ten prospective cohorts (1762 invasive cases/1890 matched controls) with pre-diagnostic serum/plasma samples, we estimated relative risks (RR) for the biomarkers and Gail risk factors using conditional logistic regression and random-effects meta-analysis. Absolute risk models were developed using these RR estimates, attributable risk fractions calculated using the distributions of the risk factors in the cases from the consortium, and population-based incidence and mortality rates. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminatory accuracy of the models with and without biomarkers.Results: The AUC for invasive breast cancer including only the Gail risk factor variables was 55.3 (95% CI 53.4, 57.1). The AUC increased moderately with the addition of AMH (AUC 57.6, 95% CI 55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4, 58.1), or both (AUC 58.1, 95% CI 56.2, 59.9). The largest AUC improvement (4.0) was among women without a family history of breast cancer.Conclusions: AMH and testosterone moderately increase the discriminatory accuracy of the Gail model among women aged 35-50. We observed the largest AUC increase for women without a family history of breast cancer, the group that would benefit most from improved risk prediction because early screening is already recommended for women with a family history.
  •  
4.
  • Ge, Wenzhen, et al. (author)
  • Circulating anti-Müllerian hormone and breast cancer risk : a study in ten prospective cohorts
  • 2018
  • In: International Journal of Cancer. - Hoboken : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 142:11, s. 2215-2226
  • Journal article (peer-reviewed)abstract
    • A strong positive association has been observed between circulating anti‐Müllerian hormone (AMH), a biomarker of ovarian reserve, and breast cancer risk in three prospective studies. Confirming this association is important because of the paucity of biomarkers of breast cancer risk in premenopausal women. We conducted a consortium study including ten prospective cohorts that had collected blood from premenopausal women. A nested case–control design was implemented within each cohort. A total of 2,835 invasive (80%) and in situ (20%) breast cancer cases were individually matched to controls (n = 3,122) on age at blood donation. AMH was measured using a high sensitivity enzyme‐linked immunoabsorbent assay. Conditional logistic regression was applied to the aggregated dataset. There was a statistically significant trend of increasing breast cancer risk with increasing AMH concentration (ptrend across quartiles <0.0001) after adjusting for breast cancer risk factors. The odds ratio (OR) for breast cancer in the top vs. bottom quartile of AMH was 1.60 (95% CI = 1.31–1.94). Though the test for interaction was not statistically significant (pinteraction = 0.15), the trend was statistically significant only for tumors positive for both estrogen receptor (ER) and progesterone receptor (PR): ER+/PR+: ORQ4–Q1 = 1.96, 95% CI = 1.46–2.64, ptrend <0.0001; ER+/PR−: ORQ4–Q1 = 0.82, 95% CI = 0.40–1.68, ptrend = 0.51; ER−/PR+: ORQ4–Q1 = 3.23, 95% CI = 0.48–21.9, ptrend = 0.26; ER−/PR−: ORQ4–Q1 = 1.15, 95% CI = 0.63–2.09, ptrend = 0.60. The association was observed for both pre‐ (ORQ4–Q1= 1.35, 95% CI = 1.05–1.73) and post‐menopausal (ORQ4–Q1 = 1.61, 95% CI = 1.03–2.53) breast cancer (pinteraction = 0.34). In this large consortium study, we confirmed that AMH is associated with breast cancer risk, with a 60% increase in risk for women in the top vs. bottom quartile of AMH.What's new? To make informed decisions about screening and prevention, women need tools to accurately assess their breast cancer risk. Young women have few predictive biomarkers to look to; estrogen and progesterone are only weakly predictive before menopause. Anti-Müllerian hormone (AMH), which strongly correlates with age at menopause, may also correlate with breast cancer risk, according to some previous data. Here, the authors test this correlation by conducting nested case-control studies within ten different cohorts. They found that breast cancer risk increased along with increasing AMH concentration, confirming this hormone as a possible biomarker for breast cancer.
  •  
5.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view